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The disease environment, schooling, and 

development outcomes: Evidence from 

Ethiopia 

Abstract 
The disease environment could help explain underdevelopment in Africa. This paper shows that 

local malaria risk is associated with worse local development outcomes. Combining an 

Ethiopian household survey with satellite-derived topographical information, the paper shows 

that malaria incidence is correlated with village elevation, slope, and their interaction. That is, 

malaria is sensitive to elevation in flatlands, where the habitat is suitable for mosquito breeding, 

but not in steeper lands. Using topography as a predictor of the disease environment, education 

levels are found to be negatively correlated with malaria. I find suggestive evidence that some 

other outcomes are related to malaria risk. Finally, the performance of topography predictors is 

assessed against other climate-based predictors of malaria.   

1. Introduction 
Debates over the lack of development in sub-Saharan Africa often mention the role of disease in 

creating a hostile environment that impedes human and physical capital investments. Gallup and 

Sachs (2001) have famously used cross-country growth regressions augmented with data on 

malaria incidence to argue that tropical diseases like malaria keep mortality high, reduce human 

capital, and pose a constraint to economic growth. Other papers have shown considerable health 

and human capital benefits of malaria eradication campaigns that have taken place outside the 

African continent. Currently lacking are measures of the impact of the disease environment 

within Africa.  This paper addresses this by providing new evidence on the relevance of the 

disease environment along several dimensions of development—including schooling, wealth, 

and exposure to shocks—within the context of Ethiopia.  
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Ethiopia is a particularly suitable country to examine this issue for two reasons. First, due to a 

significant presence of the type of the parasite Plasmodium Falciparum, malaria is a leading 

cause of morbidity and mortality in the country (Ethiopian Ministry of Health, 2006). Second, 

there are significant and largely predetermined differences in disease environment, such that 

even villages in close proximity to one another can have starkly different health risk profiles. In 

particular, Ethiopian villages vary considerably in their exposure to malaria, due to the complex 

topography of this mountainous country, and the sensitivity of malaria transmission to local 

differences in elevation and slope.  In this paper, I use topographical differences to predict 

malaria incidence. In particular, I show that the interaction between elevation and slope predict 

differences in malaria incidence in a way that is consistent with our understanding of malaria 

transmission. I then use predicted malaria to obtain a measure of the correlation of malaria 

exposure to schooling and other development outcomes. 

I study the correlation between local malaria endemicity and individual outcomes by matching a 

large-scale household survey of rural households with satellite-derived weather and topographic 

maps, which provided geographical and meteorological information on each village and include 

elevation, temperature, rainfall levels, and slope. The survey used, the Welfare Monitoring 

Survey (WMS) of 2004, surveyed approximately 1,000 villages and provides precise measures of 

schooling, self reported disease, and other household-level outcomes for a random sample of 

residents. Importantly, the survey was carried out before large-scale malaria interventions took 

place, starting in 2007. Thus, indoor residual spraying (IRS) and treated or untreated mosquito 

nets were quite uncommon at the time.1 With this data, I find that the interaction between 

elevation and slope captures malaria rates quite well. That is because malaria is sensitive to 

elevation differences in places (flatlands) where the habitat is suitable for mosquito breeding, and 

is not sensitive to elevation in unsuitable areas (steep lands). In addition, the variation in 

topographic characteristics is large enough that it is possible to estimate differences in malaria 

incidence across villages located within the same province (wareda), the smallest administrative 

unit in Ethiopia after the village. Since most administrative units, local markets, and school 

administration are centralized at the provincial level, the within-estimator eliminates a large 

source of heterogeneity in health, education, and other unobserved variation in weather, disease 

patterns, agricultural practices, and cultural traditions. Using topographical features as 

instruments for the variation in malaria, I find evidence that village outcomes are correlated with 
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malaria endemicity. In particular, increasing the malaria rate by 5.6 percentage points (which in 

the data corresponds to moving from a village with no malaria to one with average malaria) is 

associated with 0.36 fewer years of schooling for children and 0.25 for adults. I also study other 

village outcomes—such as child labour, food insecurity or wealth accumulation—and find 

evidence that some but not all outcomes are significantly related to malaria endemicity. As a 

further benchmark of these results, I re-estimate regressions using a well established climate-

based predictor of malaria. I find that topography is a better predictor of malaria incidence, and 

that climate-based estimates of correlations are not in disagreement with the topography-based 

estimates.   

The correlations found in this paper may not be interpreted causally. A causal interpretation of 

my findings requires topography to be a driver of long run malaria risk, and be uncorrelated with 

other possible drivers of local development. It is likely that elevation and slope are correlated 

with many factors other than disease, including agricultural production, household’s wealth, and 

the returns from education. On the other hand, it is less clear whether the interaction between 

elevation and slope should be correlated with those same factors, after controlling for the direct 

effect. To gain a better sense of which factors might be important confounders, I also explicitly 

study the relationship between topography and a number of village variables, including exposure 

to (non-health) shocks, distance to facilities like schools, and measures of population pressure. I 

find some evidence that some factors—like droughts and proxies for population pressure—also 

vary with topography. To the extent that these confounding factors are observable and can be 

controlled for, I find that they have a negligible impact on my estimates.  

Several papers study the effect of malaria on schooling and economic development, but for the 

most part these papers do not use African data.2 Barreca (2010) used variation in rainfall and 

temperature in the 1920s American South and estimates that a standard deviation increase in 

exposure to in-utero and postnatal malaria reduced education by 0.23 years. Bleakley (2010) and 

Lucas (2010) use the timing of malaria eradication in the US, Latin America and Sri Lanka to 

estimate the effect of malaria on education and earnings, finding that education rates increased 

post eradication. Using a similar methodology, Percoco (2013) finds similar results for Italy, 

while Cutler et al (2010) do not find improvements in schooling but some modest increases in 

adult earnings. These estimates identify the effect of childhood exposure of malaria prior to 

successful eradication campaigns. As such, they capture partial equilibrium effects and exclude 
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those general equilibrium effects that are captured by time invariant instruments such as ones 

considered in this paper. In addition, there are important differences in the disease environment 

between Africa and the rest of the world, and it is in light of such differences that it becomes 

important to find estimates specific to the African continent. Malaria eradication was attempted 

but did not succeed anywhere in Africa (Webb, 2009). The primary reason given for this is that 

the disease ecology/environment in Africa is unusually complex relative to the other continents, 

making eradication difficult and ensuring that the effects of the disease are more pronounced 

than elsewhere. Successful eradication in Africa would require dealing with all four types of 

malaria parasite (P. Falciparum, Ovalae, Vivax, Malariae) and dozens of mosquito species, 

some of which are considered extraordinarily effective in transmitting disease and avoiding the 

standard methods of mosquito control interventions (D’Antonio and Spielman, 2001). By 

comparison, in places where large-scale, broadly successful eradication or control took place—

Southern Europe, the American South, and parts of Latin America—malaria was less entrenched 

and the mosquito vectors easier to be dispensed with. In addition, the problem of malaria is 

perceived to be worst on that continent, primarily due to the incidence of P. Falciparum, a vector 

responsible for most malaria mortality. In fact, an estimated 90 per cent of malaria induced child 

deaths occur in Africa (Cook and Zumla, 2008). 

The rest of the paper is structured as follows: the next section provides background information 

on Ethiopia and malaria. Section 3 presents the data. Section 4 discusses the methodology. 

Section 5 shows the relationship between the disease environment (and malaria in particular) and 

topography. Section 6 reports the development correlates of the malaria environment. Section 7 

compares my estimates with those derived from climate-based instruments. The conclusion 

follows. 

2. Background 

Malaria 
Malaria affects approximately 250 million people and is responsible for one million deaths 

annually (WHO, 2009). This disease is transmitted to humans through bites of female anopheles 

mosquitoes. Once infected, a person can develop chills, very high fevers, anemia, and—

especially in children less than five  years of age—brain damage, coma, and death. The 
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seriousness of symptoms depends, to a great extent, on the degree of parasitaemia, itself a 

function of the number of infected bites suffered by the patient (the inoculation rate). In general, 

the higher the inoculation rate, the higher the chance of severe symptoms or permanent damage.  

 

In Ethiopia, the estimated incidence rate for malaria (that is, the estimated probability of 

contracting the disease in a year) was 15 per cent in 2005, which is somewhat low relative to the 

rest of sub-Saharan Africa (where the average incidence rate is 0.33), but higher than any other 

country outside of sub-Saharan Africa bar Panama, Laos, Myanmar, and the Solomon Islands 

(Korenromp, 2005). Despite the somewhat low incidence rate, this country is an appealing place 

to do a study on malaria for at least two reasons. First, malaria is still a very important public 

health problem: Ethiopia is thought to experience some 10 million cases per year, the fourth 

highest case number in sub-Saharan Africa (behind Nigeria, the DRC, Tanzania, and Uganda 

[Korenromp, 2005]). According to an Ethiopian report, clinical malaria accounts for 10 - 40 per 

cent of all outpatient consultations, 13 - 26 per cent of inpatient admissions at various health 

facilities, and is responsible for 15-17 per cent of case fatalities in health facilities (WHO, 2006).   

 

A second reason for considering malaria in Ethiopia is that, unlike most other African countries, 

there is extensive local variation in malaria incidence. Figure 1 and 2 make this clear. The figures 

show the predicted malaria presence across the continent, according to the MARA model 

(MARA, 2011) 3  For most countries, malaria incidence has extremely high spatial 

autocorrelation. Ethiopia, on the other hand, has a very low degree of spatial autocorrelation; 

malaria in Ethiopia is a localized disease. Studies indicate the presence of spatial autocorrelation 

in malaria rates for villages located within five  to 10 kilometers, dropping rapidly after that 

(Yeshiwondim et al, 2009). This feature permits the estimation of the impact of malaria 

incidence by comparing villages in close proximity to one another. 

Transmission: slope and temperature 
Malaria transmission is affected by land slope and temperature. The effect of temperature is well 

recognized in the malaria literature: increases in temperature increase the survival rate of 

mosquito larvae and reduce the length of sporogony—the time it takes for a mosquito which has 

ingested infected blood to be able to transmit the disease (Cook and Zumla, 2008), thus speeding 

up transmission.  Below a certain temperature threshold (corresponding to approximately 18 
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degrees Celsius), sporogony is sufficiently slow that it cannot be completed before the mosquito 

dies, making malaria transmission impossible (Craig, Snow and le Sueur, 1999).  

 

In Ethiopia, air temperature is largely determined by elevation. Figure 3 shows the relationship 

between elevation and the average daily temperature in the warmest month for Ethiopia. Above 

2,500 meters of elevation, temperatures are consistently below the no-malaria threshold, making 

villages located there malaria-free.4 

 

A second determinant of malaria incidence is the presence of mosquito breeding grounds. 

Anopheles mosquito larvae need stagnant water pools to reproduce, and environments with 

scarcity of bodies of water sustain smaller mosquito populations. On average, villages that are 

very sloped are less likely to have stagnant water pools, as rainfall converges to river systems 

downstream. In addition, larvae developing in water pools in sloped areas are more likely to be 

washed away during downpours, and might be more likely to be targeted and eliminated by 

drainage activities carried out by local villagers. Thus, sloped areas make for poor mosquito 

breeding ground, reducing the threat of malaria transmission, especially in the higher elevation 

areas that are the focus of the present study (Balls et al, 2004).  

 

Since villages that have a high slope gradient are inhospitable to mosquitoes, the incidence rate 

among villages located in steep lands is low, regardless whether they are located in high 

elevation or low elevation areas. On the other hand, villages located in flatlands are more likely 

to have a suitable environment for mosquito breeding; with mosquito populations not being a 

limiting factor of local disease transmission, elevation is likely to play an important role in 

malaria transmission, with high elevation villages having significantly lower incidence rates than 

low elevation villages. In other words, the sensitivity of malaria incidence in regards to elevation 

should increase the flatter the local topography.  

 

To be sure, malaria is not the only vector borne tropical disease that might be influenced by 

temperature and terrain. Other candidate diseases, however, follow different patterns of 

transmission. Dengue fever (transmitted by mosquitoes) is generally concentrated in urban areas 

and is found sporadically in Ethiopia (Aseffa, 1993); Yellow fever and Chikungunya (also 
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transmitted by mosquitoes) are rare in the country;5 Sleeping sickness (transmitted by tsetse 

flies) is also found sporadically (Fevre et al, 2006) as is Rift Valley fever (which, in any case, 

has severe morbidity and mortality rates in less than 1 per cent of patients [WHO, 2010]). 

Ethiopia is considered at a high risk of meningitis epidemics (Cuevas et al, 2007), and while 

there is some association between environmental factors (rainfall, forest cover, dust levels, 

human population density) and the spread of the disease, the relationship between meningitis and 

either elevation or slope is not understood.6 Other diseases, like diarrheal diseases or influenza, 

might be affected by land slope or temperature, but they are unlikely to be affected by the 

interaction of the two. 

3. Data 
The Welfare Monitoring Survey (WMS) was conducted by the Ethiopian Statistical Agency 

between June 24 and July 3 of 2004, and it involved over 2,000 villages across all states in the 

Ethiopian Federation. It covers basic individual and household characteristics, as well as access 

to several services. Crucially, it includes information on both schooling and individual level 

health conditions (including self-reported malaria spells) in the preceding two months. These 

health outcomes refer to the months May and June, corresponding to the end of the first malaria 

season (which generally runs from mid-March to June).7 In particular, for each member of the 

household, the survey asks whether the individual faced a health problem in the prior two months 

and, if so, what was the reason for this sickness. The questionnaire provides six mutually 

exclusive reasons, including malaria. Using this information, I constructed a measure of self-

reported recent malaria incidence at a village level as the fraction of the surveyed population 

who was reported as suffering from malaria.8  Since this measure of malaria incidence comes 

from self-reported diagnoses, they are likely to be measured with considerable error. This will 

justify the instrumental variable approach taken in this paper.  

 

Since it is unlikely that measurement error is as problematic if village topography is used in 

place of self reported village malaria, the WMS was integrated with measures of village 

topography derived from the use of two additional datasets. The first database is an electronic 

map developed by the Ethiopian Development Research Institute (EDRI), in collaboration with 

the International Food Programme Research Institute (IFPRI). Using the EDRI/IFPRI electronic 
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maps, I matched the names of the villages in the electronic map with the names of the WMS 

villages for the regions of Ahmara, Oromia and SNNP (see figure 4). I was unable to match a 

number of villages within these regions. In total, around 35 per cent of villages in the three 

regions were dropped. Dropped villages appear more rural and a little poorer and less educated, 

but have similar levels of sickness and self reported malaria.9 

 

Elevation, temperature, rainfall and slope for the entire country of Ethiopia come from remote 

sensing data collected by NASA satellites and elaborated by scientists at the Livermore National 

Laboratory in California. This data shows, for any coordinate point in Ethiopia, its elevation, 

slope, average rainfall, and minimum, maximum and average daily temperatures for each month 

of the year. I transferred the remote sensing data to the EDRI/IFPRI map by averaging elevation, 

temperature and slope over the entire surface of each village.10  

 

Table 1 provides summary statistics of the study villages, and separately for villages located 

below the 2,500 meter threshold. 84 per cent of villages are located between 600 and 2,500 

meters above sea level, with the remainder being high altitude villages located up to 3,500 

meters in elevation. Average village slope is 6.7 per cent, meaning that there is an average 6.7-

meter gain per 100 meters.   

 

Around a quarter of individuals were sick in the prior two months. A quarter of sick respondents 

reported suffering from malaria, half did not report a specific disease, and the rest were evenly 

divided among other health problems (diarrhea, tuberculosis, ear, nose and throat problems, other 

injuries). As one would expect from the discussion, the rate of reported sickness is significantly 

lower in high altitude villages: only 20 per cent of individuals there reported some sickness, and 

essentially none reported suffering from malaria. The dependent variables of the paper (years of 

schooling for children aged between 7 and 19 and adults and other development outcomes) are 

presented next. Since many children are still enrolled, average schooling for children does not 

represent completed education, while for adults I have largely completed formal education. On 

average, both the children sample and the adult sample report having one year of schooling. 

Other outcomes are reported next. An index of asset accumulation, obtained from the principal 

component analysis of the assets available in the questionnaire, indicates that households 
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interviewed are generally quite poor and report few assets. Child labour and food insecurity are 

also quite prevalent: On average, 53 per cent of children reported working, and families report 

0.8 instances of hunger in the prior five years. The rest of the table describes some of the control 

variables used in the study.  

4. Methodology 
The objective of this paper is to explore the correlates between local malaria incidence and local 

development outcomes by exploiting the correlation between malaria incidence and topography. 

The strategy is to first demonstrate how self-reported village malaria (measured as the fraction of 

individuals who reported having malaria in the previous two months) is explained by village 

elevation, village slope, and the interaction between the two. I then use an instrumental variable 

approach to explore the correlation between malaria rates and individual development outcomes, 

including schooling, asset accumulation, and child labour. Formally, I model village malaria 

incidence in village v in the following regression:  

 

𝑚𝑎𝑙𝑎𝑟𝑖𝑎! = 𝛼! + 𝛽!𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛! + 𝛽!
! + 𝛽!

!×𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛! ×𝑆𝑙𝑜𝑝𝑒!
! + 𝜂𝑋! + 𝜀!!!!,…,!     (1) 

 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛!  indicates village height (in hundreds of meters), 𝑆𝑙𝑜𝑝𝑒!
!  is a dummy indicating 

villages in the j-th quintile of slope,11 𝛼!  is a province fixed effect, and  𝑋! is a set of village-level 

controls. In addition to malaria, I use the same regressors to show existing correlations between 

topography and other health outcomes, including other sickness and mortality. 𝛽!    estimates the 

correlation between elevation and the outcome variable in areas that are very flat; 𝛽!
! measures 

the added correlation of elevation and the outcome in villages located in slope j; while 𝛽!
! 

measures the direct effect of slope j. Alternatively, the effect 𝛽! + 𝛽!
! measures the correlation 

between elevation and the health outcome variable for those villages located in slope quintile j. 

Based on this model, malaria incidence should be negatively related to elevation in flatlands as 

well as slope  (that is, 𝛽! and 𝛽!
! < 0). Moreover, the steeper the area, the less sensitive malaria 

incidence is to increases in elevation. Thus the overall correlation between elevation and health 
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outcomes should become smaller and smaller, and 𝛽! + 𝛽!
! → 0 as j increases. This implies that 

the interaction term 𝛽!
! should be positive, and 𝛽!

!!! > 𝛽!
! > 0. 

 

The above analysis and interpretation is applied to a subsample comprising of villages with some 

positive risk to malaria--that is, places located below 2,500 meters. As an additional robustness 

test, I will also model malaria incidence with an augmented regression that includes the full 

sample--thus including villages above 2,500 meters. A dummy variable above 2,500m is added 

and fully interacted with both elevation and slope quintiles such that each 𝛽!,𝛽!
!, and 𝛽!

! is 

identified separately for villages located above and below the 2,500 meter threshold. 

 

Having established the relationship between topographical features and the local malaria 

environment, I use topographical instruments in a 2SLS regression where the second stage is: 

 

𝑦!" =   𝛼! + 𝛾!𝑚𝑎𝑙𝑎𝑟𝚤𝑎! + 𝛿!𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛! +    𝛿!
!𝑆𝑙𝑜𝑝𝑒!

! + 𝜉𝑋!" + 𝜇!" ,!!!,…,!        (2) 

 

where 𝑦!" is an outcome of interest for person i in village v such as years of schooling, average 

asset ownership, and exposure to shocks. Note that the second stage includes elevation and slope 

quintiles, but excludes the interaction term. All specifications include province fixed effects 𝛼! , 

which absorb the unobserved variation within provinces, and a set of control variables 𝑋!". In 

regressions involving children's outcomes, controls included are average village rainfall and 

child age, education of household head, education of spouse, ownership of oxen and livestock, 

household asset ownership, distance to primary schools and health centres, whether child lives in 

a female headed household, plot size of agricultural household, and drought prevalence. The 

control set 𝑋!"  for regressions on adults include age, distance to facilities, land sizes and drought 

prevalence.12 Finally, since sickness and education are likely correlated at the village and 

province level, I cluster errors at the province level.  

 

The parameter of interest is 𝛾!, which measures the correlation between malaria incidence and 

outcome y. Note that entering malaria directly in regression 2 is problematic for a number of 

reasons. To begin with, self reported malaria in a short period of time is an imperfect measure of 



 11 

the expected local incidence; that is, my measure of malaria is likely to suffer from substantial 

classical measurement error. A second problem is reverse causality: villages with higher 

investments in education or higher levels of socioeconomic outcomes might be more likely to 

invest in malaria prevention schemes and lower malaria rates.13 These elements will bias 

coefficients toward the null. The advantage of the IV estimate is that that it addresses the 

measurement error and reverse causality problems. To the extent that the identifying assumption 

and the exclusion restriction hold, the coefficient 𝛾!  identifies the causal effect of malaria on 

outcome y. Controlling for the main effect of elevation, the instruments assigns to malaria the 

differential response of the outcome variable to elevation across slopes.  

 

Given this, consider the meaning of the identifying assumption and exclusion restriction. 

Since education decisions are taken in the past, the first requires that present malaria incidence, 

as predicted by elevation and slope, is correlated with unobserved past malaria risk, as predicted 

by elevation and slope. This assumption is violated if malaria is a very recent phenomenon, or if 

malaria transmission is sufficiently unstable such that topography generally does not predict 

malaria risk. In Ethiopia, the association between the natural environment and malaria risk has 

been present for hundreds if not thousands of years. In his book on the history of malaria in 

Ethiopia, James McCann (2015) describes malaria presence in the Blue Nile region: “malaria has 

long lived there” (p. 63). Travellers as far back as the 1800s contrasted “the wholesomeness of 

the “Abyssinian Alps” that looked… “salubrious” compared to the feverish lowlands.” (p. 15). 

Highlighting the fact that incidence may be unstable but the risk stable, McCann states, “The 

patterns are predictably periodic, episodic, and maddingly erratic.” (p.58). Thus, the historical 

record indicates significant variation in the severity of malaria over time, it also suggests that the 

predictive power of elevation (and possibly slope) was also true in the past.  

 

The exclusion restriction requires that the interaction between elevation and slope does not affect 

the outcome variable through some channel other than malaria. There are many omitted variables 

that are likely to affect development outcomes and that are correlated with elevation and slope, 

including land productivity, crop choice, agricultural shocks, distances to transportation hubs, 

population density, and (more broadly) investments in public goods. The exclusion restriction 

requires that these omitted variables are controlled directly or indirectly by the covariate matrix 
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X, the district fixed effects, and the direct measure of elevation and slope. It thus assumes away 

the situation where these covariates have a high correlation with elevation in flatlands, but 

correlate less and less with elevation at higher slopes. The empirical section tests for the presence 

of additional confounders. Unfortunately, due to data limitations it is not possible to test every 

possible covariate, and an omitted variable problem remains a possibility. A second problem 

with the IV strategy is that the instruments will be somewhat weak. This is likely due to the fact 

that malaria incidence was measured at the end of the malaria season, and thus the first stage 

does not identify the topographical effects as precisely as one wishes. It is a well-known fact that 

IV estimated with weak instruments lead to estimates that are biased towards the OLS (Angrist 

and Pischke, 2009). In all cases provided, because of endogeneity and measurement error, these 

OLS estimates are close to zero while the IV estimates move the estimates in the expected 

direction and provide estimates that are larger in magnitude and significance. I also report IV 

estimates from a limited maximum likelihood estimation (LIML), which reduces any biases 

originating from having many instruments or weak instruments. To the extent that LIML 

estimates are similar to the IV estimates in magnitude and significance, the IV bias is likely to be 

small (Angrist and Pischke, 2008).  

 

Omitted variables and weak instruments notwithstanding, the IV estimate   𝛾!  corrects 

measurement error and endogeneity biases in the correlation between malaria incidence and 

development outcomes. It moves OLS estimates towards the true causal estimates, and provides 

at least a lower bound of the true estimate. 

5. Local conditions and topography 

The disease environment 
To show how topography influences health outcomes through malaria, figure 5 shows a local 

linear estimate of the relationship between self reported malaria incidence (as described in 

section 3) and village elevation. As altitudes increase, the proportion of the villagers reporting 

having suffered from malaria decreases. The proportion of villages with malaria remains flat and 

close to zero for elevations above 2,500 meters, as expected. Using the same procedure, the 
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relationship between slope and malaria for villages located below 2,500 meters is shown in 

figure 6. Malaria rates are high in flatlands, with the estimated rate falling with the slope.  

 

To formalize the results from the two figures, table 2 provides an initial overview of the 

relationship between health and topography in Ethiopia through a regression of village disease 

incidence on village elevation, slope, and a full set of covariates.14 The odd columns of the table 

report coefficient estimates for villages located below 2,500 meters of elevation. Even columns 

also include villages above the threshold; the column reports the main estimated effect for 

villages below the threshold as well as the estimate from an “above 2,500 meters” dummy 

interacted with elevation.  

 

Columns 1 and 2 consider overall health incidents. It confirms that higher elevation villages are 

healthier: on average, each 100 meters of elevation gain reduces sickness by 0.8 percentage 

points, or approximately 3.3 per cent of the average level of village sickness. Moreover, this 

correlation disappears above the 2,500-meter line (column 2), something that would be expected 

if the correlation were driven by malaria. Land slope is negatively correlated with sickness, but 

the coefficient is insignificant. In columns 3 and 4, I consider self-reported malaria. The 

coefficient on altitude indicates that just 100 meters gain in elevation is sufficient to reduce 

malaria by 0.6 percentage points, which is 10.5 per cent of mean malaria---a very high rate. 

Slope is now strongly significant, indicating that more sloped villages have lower reporting of 

malaria. One way to consider the magnitude of the effect is to consider that moving from an area 

with zero slope to one with average slope (6.7%) reduces malaria incidence by 2 percentage 

points-- over a third of mean malaria. Above 2,500 meters (column 4) the negative correlation 

between malaria and elevation disappears. Columns 5 and 6 show the relationship between other 

types of sickness (all causes excluding malaria) and elevation and slope. The estimated effects 

are small and statistically insignificant. This assures us that the linkage between health and 

elevation is driven by malaria.15 Finally, the last two columns of the table show results for the 

measure of mortality present in the survey (number of deaths in the household in the past five 

years). This measure is noisy, as it includes all mortality for all age groups and for any reason. 

While the estimates move in the same direction as those found in the malaria regressions, the 

estimated coefficients are all insignificant. 
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Estimates of equation (1) are presented in table 3. The table shows whether the interaction 

between elevation and slope can be used to predict adverse health reporting. Column 1 shows 

that this is not the case for overall sickness. While sickness decreases with elevation, this 

relationship is found across slopes. When focusing on malaria only (column 2), I find that 

elevation predicts malaria in villages located in the bottom four quintiles of land slope---but not 

in the steepest villages, which have low incidence rates everywhere. The point estimates suggest 

that the impact of elevation on malaria declines the steeper the village. Moreover, the interaction 

coefficients are jointly significant: the p-value on the F-statistic of joint significance is 0.07. 

Column 3 looks at all-cause sickness excluding malaria. I find that sickness and elevation are not 

related in flatlands, but overall other cause health problems decline at higher slopes. Taken 

individually, diseases such as diarrhoea, tuberculosis, ear, nose and throat problems, and other 

types of injuries are sometimes correlated with elevation at higher slopes only (not shown). Thus, 

the pattern of high correlation with elevation in flatlands is specific to malaria. Finally, mortality 

(column 4) again follows a clear pattern consistent with malaria, but the coefficients are not 

statistically significant. 

 

Other factors and topography 
A key issue is that topography could be correlated with a host of other factors affecting local 

development other than malaria. For instance, elevation alone could affect farm productivity and 

exposure to weather shocks. Higher elevation villages might also have closer access to schools, 

services, or labour markets where returns to education are higher. In addition, the highlands in 

Ethiopia are known to be densely populated, and this could affect the level of wealth or 

schooling in the community. To the extent that these factors are correlated with the interaction 

between elevation and slope, they represent alternative pathways through which topography 

shapes local development.  

 

Table 4 explores a number of these potential correlates16. First, column 1 through 4 report 

estimates from the regression (1) on a number of different types of agricultural shocks--namely, 

the number of instances the household suffered floods, droughts, livestock losses, a price shock 

or some other (non-health) shock in the prior five years. Droughts are indeed correlated with the 
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interaction between slope and elevation, with the incidence of droughts declining with elevation 

in flatlands but not in steep lands. Shocks to livestock are significantly correlated with elevation 

in quintile 2 and 5 of slope, while floods and other shocks cannot be explained by topographic 

factors. Next, I make use of household-specific distances to schools and clinics to test whether 

location to public services differs by elevation and slope (columns 5 and 6).17 School distance 

does not decrease with elevation in low-sloped areas, but it does for highly sloped areas--the 

opposite pattern observed for disease. Third, I would like to check how topography correlates 

with population density. As a noisy proxy of population pressure, I consider in column 7 the 

average size of land holdings. This measure seems to vary somewhat with topography; in 

particular, land sizes decrease with elevation, especially in the steepest areas.  

 

Overall, the table demonstrates the presence of some topography covariates that may be 

important co-determinants of development outcomes. Most of the positive evidence in the table 

points to an elevation gradient in steep lands; much less so for flatlands. In all regressions, I 

control for land sizes and droughts, even though the estimates are not sensitive to their inclusion. 

6. Malaria environment and individual development outcomes  

 Schooling 

Reduced form results 

Having established that recently reported malaria is strongly correlated to topography through 

the interaction between village elevation and slope, I now show how topography correlates with 

other development outcomes in a similar way. In table 5, I turn to the sample of individuals and 

regress years of schooling for children (age 7-19) and adults (age 20+) on elevation, slope, and 

individual covariates, first focusing on elevations below the 2,500-meter threshold (columns 1 

and 2) and then on all villages (columns 3 and 4).18 Average schooling increases with elevation 

for both adults and children. Conversely, the higher the slope of the village, the lower the 

educational attainment. In columns 5 and 6 I interact elevation with slope quintiles. Both 

regressions show that there are gains in education from elevation in flat areas, but the higher the 

slope, the lower the gain; in addition, there are no gains for those living in the steepest areas. 

Coefficients are more precisely estimated for the sample of children. 
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Instrumental variable results 

I turn to instrumental variable estimates of equation (2) in table 6. Here, I use village 

topographical characteristics as instruments for malaria incidence, and look directly at the impact 

of recent self-reported village malaria on average years of schooling for children and adults, with 

results disaggregated by gender. In the first column, I do not focus on topography and report 

simple OLS results. In column 2, I use a 2SLS model where malaria is instrumented by elevation 

and the slope/elevation instruments are not included in either first or second stage. In column 3 I 

report IV estimates using the first stage reported from equation (1), which controls for elevation 

and slope quintiles and uses the interaction between elevation and slope as instruments. In 

column 4, I include all observations from all elevations, where the instrument set includes the 

interaction between quintiles of slope, elevation, and whether a village is located above 2,500 

meters. In column 5, I report LIML estimates. 

 

Looking at the first column of table 6, the coefficients on malaria are small and statistically 

insignificant for all OLS regressions, consistent with significant measurement error in the 

malaria measure. When turning to the IV specification in column 2, however, the coefficients on 

malaria become all negative, large in magnitude, and statistically significant for children, and 

marginally insignificant for adults (p-value for the all-adult regression: 0.13). Coefficients for 

women are slightly more negative but within the standard error of those for men for both adults 

and children. Column 3 uses the interaction of elevation and slope as instruments. Instrumented 

malaria remains negatively associated with lower schooling levels, but the results are not 

statistically significant for children education. Column 4 reports the results using the expanded 

set of instruments and villages. The coefficients estimates remain very similar to the previous 

column but turn statistically significant for children, while they become smaller but remain 

significant for adults (although only for the male adult sample). Point estimates are more 

negative for males than females on both child and adult samples, which is consistent with 

epidemiological evidence showing that Ethiopian males are more exposed to the disease 

(Yeshiwondim et al, 2009).19  LIML estimates (column 5) are very similar to IV estimates. This 

suggests that our weak instruments (P-value of F-test is 3.4) are identifying the correlation of 

interest. Overall, considering the coefficients from panel A and D, the regressions imply a 

difference in education between no malaria villages and average malaria villages (where the 
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average is 5.7 per cent for all villages) of 0.36 fewer years of school for children, and 0.25 fewer 

years for adults.  

Other outcomes 

Table 7 considers the effect of topography on a number of other outcomes that might be affected 

by malaria incidence. I start with child labour, measured as the proportion of children aged 10-17 

who reported working in the prior seven days, in column 1 through 4. One could expect child 

labour to be more prevalent in areas with more malaria if malaria drives up the demand for child 

labour, possibly because children may be sent to work in the fields to substitute for sick parents. 

Second, frequent malaria spells might reduce the earning ability of a household. For agricultural 

households, this might translate into more food insecurity in the short run. To verify this, in 

column 5-8 I consider self reported instances of food insecurity (measured as the number of 

times villagers reported suffering a food shortage in the prior five years). Finally, over the long 

run, a more adverse environment should translate into lower levels of asset accumulation. To 

capture this, I consider the average value of the asset index in the remaining columns. For all the 

outcome variables, I first report the (biased) OLS estimates, and then consider progressively less 

biased 2SLS specifications from the last three columns of table 6. 

  

The IV estimates of child labour effects (columns 3 and 4) are significant at the 10 per cent level 

and indicate that there is 0.057 X 1.685=9.6 per cent more child labour in areas with average 

malaria than in no malaria areas. The estimated correlation of malaria and food insecurity is not 

as precisely estimated, as one would have liked. However, it is notable that the estimates become 

larger and larger in magnitude as we move from the more biased OLS estimates to the less 

biased LIML estimates. The IV estimates are statistically insignificant, so a relevant conclusion 

cannot be drawn, although the coefficients move in the expected direction. The LIML estimates 

implies 0.057 X 3.15=0.18 more instances of food shortage periods. Finally, the estimate on the 

asset index regression is small and has a very large standard error, so no positive conclusion can 

be drawn. 
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7. Climate vs. topographical predictors 
Since the justification for the use of topography is that transmission of the malaria parasite 

declines with temperature, a natural alternative instrument is the village climate. One strategy is 

to replace elevation with average village temperature. This strategy yields similar results with 

somewhat weaker instruments.20 An alternative approach is to use the malaria index developed 

by Craig, Snow and le Sueur (1999); this index is the basis for the widely used maps of malaria 

transmission across sub-Saharan Africa created under the MARA/ARMA project (see figures 1 

and 2). The climate index assigns a value of 0 to areas that are not suitable to malaria 

transmission, a value of 1 to areas that are suitable for transmission, and a value between 0 and 1 

for areas that are partially suitable. As the discussion below will make clear, this measure 

captures well malaria presence, but it is a poor proxy for malaria incidence. 

To show this, I first constructed the MARA index for the villages in the sample. 21 The MARA 

index is highly correlated with elevation (correlation coefficient -0.84); the merits of the MARA 

index relative to an elevation-only method can be seen in table 8. The first column shows 

estimates from regressions of recent village malaria on the MARA index on all villages. The 

index strongly predicts village malaria. In the second column, I set up a “horse race” between the 

topographical and climate instrument by including elevation interacted with the above 2,500 

meter dummy. When topography is included, the MARA index ceases to be significant. As a 

measure of malaria intensity, the MARA model is not as useful. Columns 3 and 4 report the same 

regressions, where the dependent variable is now an indicator variable equal to one if at least one 

person in a village reported having malaria. As can be readily seen, the MARA model strongly 

predicts malaria presence, and it wins the horse race against elevation. Since that the focus of the 

index is in measuring the suitability of transmission rather than the intensity of transmission, it is 

unsurprisingly much better at predicting malaria presence rather than incidence. 

Using the MARA model as the IV for malaria, the main results of the paper are replicated in 

table 9. Estimated malaria effects on schooling are somewhat more negative than those in table 6 

(columns 1 and 2); however, standard errors are large and the instrument set appears overall 

weaker. For comparison, in column 3 and 4, I replace malaria intensity with malaria presence. 

The F-statistic on the instrument becomes large, and a (negative) correlation is now evident 

among children (but not adults). Estimates do not survive more sophisticated estimation methods 

(such as fuzzy-RD designs). 
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8. Conclusion 
This paper presents correlates of malaria and development outcomes including schooling, 

mortality and asset accumulation using data from Ethiopia. The paper first provides evidence that 

malaria is strongly associated with topographical features. In particular, it makes use of the fact 

that malaria prevalence is sensitive to air temperature and to the presence of mosquito breeding 

grounds. Since temperature declines with elevation, and mosquito breeding grounds are less 

likely to form in sloped areas, it follows that elevation, slope, and the interaction between 

elevation and slope are potential time invariant predictors of malaria risk. The paper then uses 

these topographical features as instruments for malaria to reduce measurement error and reverse 

causality in a regression of malaria on local outcome variables from a large-scale survey of 

Ethiopian villages. I find that Ethiopian villages that are less prone to malaria have higher 

schooling rates for both adults and children. I also find some suggestive (but ultimately 

inconclusive) evidence that malaria incidence may be an important driver of food security.  

 

The estimates presented in this paper may be considered a lower bound on the (local) effect of 

malaria on long run outcomes. Because the methodology adopted here relies on topographical 

differences across villages, one should be careful to compare them from estimates obtained 

through other methodologies, such as the ones adopted by Bleakley (2010), Lucas (2010). In 

particular, estimates from papers that rely on eradication identify the effects of eradication on a 

specific age group (that is, children exposed in utero or in early life), and by necessity capture 

partial equilibrium effects. To the extent that the exclusion restriction in this paper applies, my 

estimates are capturing an effect that incorporates both partial and general equilibrium. While 

this approach has a particular limitation in that the exclusion restriction is difficult to verify, it 

may be the best one can do in contexts where there are no exogenous changes in malaria 

prevalence induced by eradication or other malaria control measures.  

  

                                                
1 For instance, the Ethiopia National Malaria Indicator Survey of 2007 states that ITN coverage was 3.5 
per cent in 2005, increasing to 53.3 per cent by 2007. 
2 Depetris-Chauvin and Weil (2013) study the effect of malaria on early African development (mortality 
and economic development) by exploiting variation in the sickle cell trait across African ethnic groups. 
Barofsky, Anekwe and Chase (2015) study a failed eradication campaign in Uganda and find that cohorts 
born in the eradication period increased their schooling by 0.5 years.  
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3 The Mapping the Malaria Risk in Africa collaboration integrates rainfall and temperature information to 
generate a model of malaria prevalence for sub-Saharan Africa. 
4 In this paper, I focus on elevation as opposed to temperature because the entomological literature is 
unclear about how to take into consideration daily and seasonal variations in temperature. Nonetheless, 
given the strong linear relationship between the two measures, all results in this paper are very similar 
when replacing elevation with average daily temperature, with results available upon request. 
5 Aseffa [1993] reports no cases in Ethiopia from 1966, and the WHO in 1995 reported no cases between 
2000 and 2004. In 2004, there were a total of 128 suspected yellow fever cases in sub-Saharan Africa. 
6 Meningococcal bacteria is spread person to person through cough droplets, so there is not a direct 
connection with topographical factors. The most recent epidemic prior to the study period was in 2001-
2002, where a total of 1,332 cases and 85 fatalities were identified (WHO, 2002). 
7 The second malaria season in Ethiopia is September to November, after the long rains (meher). The 
timing of rains varies from region to region. 
8 Malaria in the highlands fluctuates from year to year and seasonally. Fortunately, the survey was taken 
between June 24 and July 3, a period that generally coincides with the peak of the minor transmission 
season. Thus the survey covers a period of malaria transmission. See online appendix for a description of 
malaria transmission patterns in Ethiopia.  
9 See the online appendix for detailed information on the matching procedure and comparison between 
matched and unmatched villages. 
10 Note that the average of the topographic measures over the entire surface of the administrative unit is, 
by necessity, an imperfect measure of the true topographic characteristic of the village. This is because 
housing units are not uniformly spread around the administrative unit, and are in fact often concentrated 
in a smaller area. See data appendix table for a greater description. 
11 The first quintile of slope goes from 0 to 2.5 per cent; the second quintile from 2.5 to 4.5 per cent; the 
third from4.5 per cent to 6.8 per cent; the fourth from 6.8 per cent to 10.2 per cent, and the last from 10.2 
per cent to 26 per cent. 
12 While some of the controls in 𝑋!"could represent possible pathways for malaria to affect outcomes, in 
practice their inclusion is not important—estimates of 𝛾! obtained from regressions excluding all 
household controls are slightly noisier but similar in magnitude (see tables in online appendix). 
13 The main types of investments available are (relatively expensive) environmental management to 
reduce the productivity of mosquito breeding sites. At the time of the survey, mosquito nets were quite 
rare in rural Ethiopia. 
14 For simplicity, tables 2, 3 and 4 employ the child regression controls averaged at the village level.  
Alternative specifications (without controls, or using the individual as unit of observation) lead to very 
similar estimates and are available in the online appendix.   
15Note that, due to the structure of the questionnaire, there should be a negative correlation between 
reporting of malaria and reporting of other sickness types at the individual level (because answers are 
mutually exclusive). If respondents report other sickness ahead of malaria, there could be an attenuation 
bias in the malaria estimates. Since the fraction of malaria or other sickness reports is generally small, the 
bias is unlikely to be large. 
16 Table shows village-level regressions. Regressions at the individual level are very similar and are 
available in the online appendix.  
17 School and clinic distance is a convenient proxy to distance to other services, since distances to other 
services (like markets, roads, sources of farm goods, and so on) behave in a similar pattern. 
18 Results are robust to changes in the covariates. While coefficients on covariates are not shown, they 
move in the expected direction: parental wealth and education increase children’s schooling and distance 
to schools decreases it. Livestock ownership is associated with more schooling, suggesting that the 
income effect from livestock trump substitution effects arising from the fact that animal husbandry is an 
important labor activity of Ethiopian children. Graphs of local linear estimates of schooling and 
topography available in the online appendix. 
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19 Boys and adult men spend more time in the fields than girls, who spend a larger fraction of their time at 
home. Since sleeping outside to protect the field is quite common, farm workers are more exposed to 
mosquito bites. 
20 Results available upon request.  
21 Due to slight differences in data availability, my MARA measures may be marginally different from 
those observed in figure 1. See online appendix for a discussion of how the MARA index was constructed 
for the WMS villages in my sample. 
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Fig 5: Local linear estimate of malaria and elevation. Each dot plots the average malaria for 
villages located within 10 meters of elevation.  
 

 
Fig 6: Local linear estimate of malaria and slope. Each dot plots the average malaria for villages 
located within 0.1% of slope. 
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(1) (2) (3) (4) (5) (6) (7)

Column title is 
dependent variable Floods Droughts

Livestock 
losses

Price shocks/ 
Other shocks

School 
distance

Health 
facility 

distance Land sizes

Elevation 0.003 -0.073** 0.025 0.005 -0.020 -0.081 -0.001
(0.016) (0.033) (0.030) (0.014) (0.021) (0.341) (0.036)

Elevation x:
Slope 2 -0.010 0.053* 0.028 0.005 0.015 0.376 -0.066*

(0.014) (0.028) (0.025) (0.017) (0.020) (0.326) (0.037)
Slope 3 -0.006 0.048 0.002 -0.002 0.015 0.122 -0.047

(0.016) (0.029) (0.029) (0.013) (0.018) (0.369) (0.031)
Slope 4 0.001 0.063* 0.014 0.002 -0.037 0.024 -0.037

(0.016) (0.035) (0.030) (0.013) (0.033) (0.342) (0.033)
Slope 5 -0.015 0.056* -0.049 -0.012 -0.030 -0.061 -0.077**

(0.018) (0.033) (0.037) (0.013) (0.031) (0.336) (0.033)

Observations 844 844 844 844 844 844 844
R-squared 0.016 0.049 0.049 0.022 0.139 0.059 0.153
Province f.e. YES YES YES YES YES YES YES
Mean dep. Var 0.132 0.414 0.386 0.048 0.712 4.83 2.88
P-value of F-test: Elevation + Elevation X Quintile = 0
Elev., 2nd quintile=0 0.635 0.411 0.021 0.231 0.797 0.154 0.024
Elev., 3rd quintile=0 0.815 0.308 0.258 0.606 0.766 0.824 0.037
Elev., 4th quintile=0 0.720 0.732 0.079 0.316 0.071 0.739 0.134
Elev., 5th quintile=0 0.441 0.494 0.280 0.187 0.056 0.321 0.000
Sample of villages <2,500 meters. Shocks are the village average number of occurrences in the
 household in the prior 5 years. Tenure length is the number of years in the residence. Walking distance 
to facilities measured in hours. Land size is measured as quintiles of land size. Controls include slope 
quintiles and other controls as in table 2. Errors clustered at the province level. 
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Topography correlates with other factors
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(1) (2) (3) (4) (5) (6)
Dep var: 
Average yrs. schooling Children Adults Children Adults Children Adults

Elevation 0.058*** 0.041* 0.053*** 0.033* 0.109*** 0.064
(0.013) (0.023) (0.013) (0.020) (0.029) (0.044)

Slope -2.112** -3.232** -2.117*** -3.220***
(0.815) (1.286) (0.694) (0.986)

Elevation X:
Above 2,500 meters -0.066** -0.017

(0.027) (0.024)
Slope 2 -0.028 0.017

(0.026) (0.036)
Slope 3 -0.050* 0.008

(0.029) (0.038)
Slope 4 -0.057* -0.038

(0.031) (0.042)
Slope 5 -0.068** -0.052

(0.030) (0.044)

Observations 17,178 19,957 20,457 23,672 17,178 19,957
R-squared 0.214 0.067 0.213 0.066 0.215 0.069
Province f.e. YES YES YES YES YES YES
P-Value of F-test: Elevation + Elevation X Quintile = 0
Elev. 2nd quintile=0 0.002 0.010
Elev. 3rd quintile=0 0.084 0.011
Elev. 4th quintile=0 0.020 0.407
Elev. 5th quintile=0 0.706 0.352
OLS regressions at the individual level. Children are aged 7-19, adults are
 aged 20+. Column 3 and 4 include all villages, remaining columns exclude villages
 located above 2,500 meters. 
Controls for regressions on children schooling include: average village rainfall, 
farming household dummy, female headed household dummy, household size,
number of livestock, oxen, household wealth index, land size, schooling of adult
 males and females in the household, child age, distance to schools and health
 clinics, number of droughts in the past 5 years. 
 Controls for regressions on adult schooling include rainfall, age, land size, 
distance to schools and health clinics, and number of droughts in the past 5 years. 
Columns 3 and 4 include an "above 2,500 meters" dummy. Columns 5 and 6 
include slope quintiles. Errors clustered at the province level in parenthesis.
*** p<0.01, ** p<0.05, * p<0.1

Villages <2,500 m All villages Villages < 2,500 m

Table 5: Relationship between village topography and schooling
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Table 6: IV estimates of malaria intensity on schooling outcomes
(1) (2) (3) (4) (5)

OLS IV IV IV IV-LIML
Instruments Elevation Elevation
Dep Var: only X Slope
Years of schooling quintiles
A. All children aged 7-19
Malaria intensity 0.294 -9.447*** -5.668 -6.332** -6.779**

(0.364) (3.492) (3.658) (2.649) (2.910)
Observations 17,178 17,178 17,178 20,457 20,457

B. Boys aged 7-19
Malaria intensity 0.468 -9.352** -5.850 -5.931** -6.653*

(0.536) (3.843) (4.561) (2.970) (3.442)
Observations 8,886 8,886 8,886 10,559 10,559

C. Girls aged 7-19
Malaria intensity 0.259 -8.350** -2.239 -5.437** -5.833*

(0.350) (3.511) (3.198) (2.742) (2.987)
Observations 8,292 8,292 8,292 9,898 9,898

D. All adults 
Malaria intensity -0.064 -7.147 -8.554** -4.412* -4.550*

(0.358) (4.796) (4.255) (2.266) (2.347)
Observations 19,957 19,957 19,957 23,672 23,672

E. Male adults
Malaria intensity -0.361 -8.141 -12.919** -7.194** -7.527**

(0.515) (5.732) (6.067) (3.083) (3.268)
Observations 9,585 9,585 9,585 11,342 11,342

F. Female adults
Malaria intensity 0.131 -6.883 -5.073 -2.356 -2.448

(0.301) (4.414) (3.524) (2.161) (2.240)
Observations 10,372 10,372 10,372 12,330 12,330

Province f.e. YES YES YES YES YES
Sample <2,500m <2,500m <2,500m All All
F-test of excluded instruments 9.427 1.515 3.426 3.426
Table reports coefficients on instrumented village malaria. 
Child controls included in panel A-C. Adult controls used in panel D-F. 
Controls listed in table 5. Robust standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Elevation X
Slope quintiles

X Above 2500m
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(1)

(2)
(3)

(4)
(5)

(6)
(7)

(8)
(9)

(10)
(11)

(12)
E

xcluded 
N

one
E

levation X
N

one
E

levation X
N

one
E

levation X
instrum

ents
S

lope 
S

lope 
S

lope 
quintiles

quintiles
quintiles

O
LS

IV
IV

IV-LIM
L

O
LS

IV
IV

IV-LIM
L

O
LS

IV
IV

IV-LIM
L

C
olum

n title is
dependent variable

Village m
alaria

0.321**
-0.160

1.524*
1.685*

1.235***
3.125

2.916
3.149

-0.100
-0.510

-0.643
-0.697

(0.143)
(1.608)

(0.865)
(0.990)

(0.382)
(2.869)

(2.270)
(2.594)

(0.282)
(3.139)

(2.057)
(2.260)

S
am

ple of villages
<2,500

<2,500
A

ll
A

ll
<2,500

<2,500
A

ll
A

ll
<2,500

<2,500
A

ll
A

ll
O

bservations
11,563

11,563
13,780

13,780
19,957

19,957
23,672

23,672
19,955

19,955
23,670

23,670
R

-squared
0.005

0.142
0.113

0.108
0.379

0.373
0.350

0.348
0.263

0.263
0.234

0.234
P

rovince f.e.
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
F-test of excluded instrum

.
1.33

3.75
3.75

1.87
3.43

3.43
1.87

3.43
3.43

C
olum

ns 1-4 include child regression controls. R
em

aining colum
ns include adult regression controls 

(see table 5). C
hild labor is thefaction of children 10-17 w

ho reported w
orking in the prior 7 days. Food security refers 

to the average num
ber of tim

es households faced food shortages in the prior 5 years. R
obust standard errors in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

A
bove 2,500m

E
levation X
S

lope X
 

A
bove 2,500m

C
hild labor (children >10 y.o. only)

Food insecurity (A
ll adults)

A
sset index (A

ll adults)

E
levation X
S

lope X
 

A
bove 2,500m

E
levation X
S

lope X
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Table 8: Climate vs. Topographical estimates of malaria
(1) (2) (3) (4)

VARIABLES

MARA model 0.030** -0.012 0.328*** 0.226**
(0.012) (0.025) (0.066) (0.112)

Elevation -0.007** -0.018
(0.004) (0.016)

Elevation X Above 2,500m 0.010*** 0.029
(0.004) (0.022)

Observations 1,000 1,000 1,000 1,000
R-squared 0.134 0.149 0.125 0.138
Province f.e. YES YES YES YES
P-value of joint significance of elevation and elevation X Above

0.017 0.55
Village regressions on malaria. See table 2 for list of village 
controls. Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Village malaria
Dummy: Village has 

some malaria

Table 9: Climate IV estimates of malaria effects on schooling outcomes
MARA model predictions
Dep Var: (1) (2) (3) (4)
Years of schooling IV IV IV IV
Instrumented variable
A. Education children aged 7-19
Malaria measure -9.715** -16.188 -0.864*** -1.233**

(4.428) (12.619) (0.304) (0.596)
Observations 20,457 20,457 20,457 20,457

B. Education adults 
Malaria measure -5.786 -7.635 -0.509 -0.606

(5.325) (9.617) (0.393) (0.634)
Observations 23,672 23,672 23,672 23,672

C. Child Labor
Malaria measure 2.140* 3.704 0.192* 0.277

(1.234) (3.200) (0.111) (0.211)
13,209 13,209 13,209 13,209

Province f.e. YES YES YES YES
Elevation controls None Linear None Linear 
Sample All All All All
F-test of excluded instruments 8.765 2.307 36.34 10.96
IV regressions using MARA model as instrument for malaria. Individual
controls for panel A and C are children controls, for panel B are adult controls. 
See table 5 for list of controls. Robust standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Malaria intensity Malaria presence


